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Diffusion eigenstates of a porous medium with interface absorption
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The eigenvalues and general shapes of the low lying diffusion eigenstates are studied for the case of
diffusion in a fluid-filled porous medium of arbitrary, though macroscopically homogeneous, microstructure
with nonzero absorption at the pore walls. Those eigenstates are then used to discuss trfeetehmnk
effective stationary diffusion coefficients and other aspects of the diffusion at long times, such as the pulsed-
gradient spin-echo amplitude and the return to the origin probalRIyOP. It is shown that, under quite
general conditions the localized states are unimportant, and only the low-lying extended states make a signifi-
cant contribution to the long time behavior of these quantities. The eigenvalues or decay rates of those states
always have the form, for small wave vectors|, and\ is bounded from above hy,+q- De- . A general
connection is found betwedd, and an electrical conductivity problem in the same medium. Using the bound
onAg, itis shown that the relative RTOe., the RTOP in a fluid-filled porous medium divided by the RTOP
in the uniform fluig exhibits a nonmonotonic dependence on time, reaching a maximum at some finite
characteristic value. Similar considerations also lead to the possibility of nonmonotonic behavior of the bulk
effective time-dependendiffusion coefficient[S1063-651X97)06404-0

PACS numbegps): 05.60+w, 66.10.Cb

The problem of time-dependent diffusion in a restricted In the case where there is no decay at the interface, a
pore spaceV,, has recently come under increased scrutiny.connection has long been known to exist between the station-
This is due, in part, to the increased exploitation of nuclearry diffusion problem in such a medium, where diffusion can
magnetic resonancdNMR) methods for measuring the dif- only take place in the pore space, and the electrical conduc-
fusion of (nuclear spih polarized molecules in a fluid-filled tion problem, where only the pore space is conducting
porous medium{1-3]. Such measurements are performed[14,8].
either in the presence offaxed(i.e., time independengra- In this paper, we study some general properties of the
dient of the spin aligning magnetic field], or under appli- low-lying diffusion eigenstates of the time-dependent diffu-
cation of apulsed field gradienf5]. In the latter case, very sion problem in a porous medium. We consider the case of a
detailed information can be obtained about the diffusion ingeneral, though macroscopically homogeneous, microstruc-
such a restricted pore space, and it can be drastically affectddre, thus our results apply to disordered porous media as
by the microstructurg2,6,7. well as to periodic ones. We also allow for absorption at the

The simplest situation is when the diffusing particles sur-interface. We identify a class of low-lying extended eigen-
vive indefinitely—there is no absorption of particles, or de-states that govern the bulk effective stationary diffusion in
cay of the spin polarization, either inside the pore space or ahe porous medium, as well as the time-dependent diffusion
the pore-matrix interface. A finite decay probability for the at long times. The eigenvalues of those states are given by a
diffusing particle poses no special problems if it has a uni-dispersion expression,, whereq is a wave vector that is
form value throughout the pore space. However, if somesmall compared to the inverse size of the typical pores, and
kind of decay can occur only at the pore-matrix interface, the\q IS shown to be bounded from above by a simple quadratic
theoretical treatment can be quite considerably complicatedunction ofg. We derive a very general connection between
Such a decay phenomenon can be the result of a chemicgle tensor of bulk effective stationary d|fquS|on coefficients
reaction that occurs only at the interface, or a consequence &f. and the bulk effective conductivity tensog, of a certain
the presence of paramagnetic ions in the matrix or at theonductivity problem in a medium with the same microstruc-
interface, leading to an enhanced decay of polarization wheture. The upper bound ok leads to predictions regarding
a spin polarized molecule reaches that interfdde the behavior of a particle diffusing in the fluid-filled pore

Theoretical and numerical studies of restricted diffusionspace: the RTOP, when normalized by the RTOP in a uni-
often focus on the diffusion eigenstates. In particular, for theform fluid, is a nonmonotonic function of timg which in-
case of a porous medium with a periodic microstructure, efcreases with at smallt, then reaches a maximum value, and
ficient techniques have been developed for computing thosknally decreases towards an asymptotic constant value as
eigenstate$8,9]. In this way, interesting physical quantities t—. It is also shown that the bulk effective time-dependent
could be calculated, such as ttiene-dependentbulk effec-  diffusion coefficient can exhibit a nonmonotonic dependence
tive diffusion coefficient[8—10], spin polarization ampli- on time under certain conditions. Finally, we discuss the pos-
tudes that are measured in an NMR spin-echo measuremesible influence of localized diffusion eigenstates on the mac-
in the presence of either a static field gradigbl] or a  roscopic diffusion.
pulsed field gradienf8—10, and the return to the origin The rest of this paper is organized as follows: In Sec. | we
probability (RTOP for a diffusing particlg 12,13 discuss the properties of the low-lying diffusion eigenstates,
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both extended and localized, and derive an upper bound for 1

\q- We also derive the connection betweg and oe. In V_pfv AV, = o - 1.7
Sec. Il we discuss some physical implications for the diffu- P

sion propagator and its Fourier transform, @g, and for From Eq.(1.9 it also follows that

the normalized RTOP. In the Appendix we provide proofs
for some of the more technical points mentioned in this pa- )\J' dvlg,|?=p § ,,Vpdﬂ |2+ Dof dVv|V iy, |2,
per, and point out a curious, unexplained symmetrya gf Vp Vp

and its associated eigenstates. 1.8
and therefore thah>0, unlessy,= const andp=0, in
|. BASIC THEORY OF THE DIFFUSION EIGENSTATES which case\ =0. If we treat the right-hand sidghs) of this

equation as a quadratic functional, namely,
The time-dependent diffusion in a porous medium with b
interface absorption is described by the following equations = _Fr é 2+_0f v 2 1

for the densityn(r,t) of the diffusing particles: [v] Vo "dialm Vo Vpd Vol @9
n then the requirement th&[ 4] be stationaryli.e., that its

EzDOVZn for reVy, (1.1)  first variation vanishes$F[ ¢]=0), in the space of normal-
ized functionsy(r) that have square integrakpartial) first
derivatives inV,, is equivalent to Eqg1.3), (1.4), and(1.7).

0=Dgn-Vn+pn for redVv,, (1.2 The eigenfunctions will have continuous first and second
partial derivatives throughot,, .
whereV,, is the pore space)V, is the pore-matrix interface, The eigenvaluea can also be calculated from
n is the outward pointingfrom pore to matrix normal vec-
tor at the interfaceD, is the diffusion coefficient in the A=F[#]. (110

uniform fluid, andp is the interface absorption coefficient. \1oreover. because of the variational property=ois], when

The diffusion eigenfunctions are solutions of the form s calculated in this way, a small errefr) in ¢, (r) leads
s (r)e M, where\ is the eigenvalue and, (r) satisfies the g only ahigher ordererror in\,

following equations:
Fly+€]=N+0(€?). (1.1
N +DoV2, =0, reV,, (1.3
A. The lowest eigenstate
Don- Vi +pin =0, redV,, (1.9 The lowest eigenvalue, denoted hy, is just the mini-
mum value of the functiondF[ #]. Whenp=0, that eigen-
as well as some macroscopically uniform boundary condivalue and its eigenfunctiogy(r) are given by
tions at the external surface of the system, which we denote _ _ _
by 9V.,. As usual in such cases, the precise nature of those Mo=0, hpo(r)=1for p=0, (112
boundary conditions is unimportant, provided that the systenbut when p#0, thenA\;>0 and #,(r)# const. We can
size is much larger than the typical pore sizes. show, however, thay(r)>0 throughoutV,,.
From these equations we easily get In order to prove this, we first note th&f v]=F[||] for
any real #(r). Also, sinceA>0, any real eigenfunction
. o2 i (r) cannot have a local minimum at any internal point
)‘fv AV, ih=— Dofv dVy, Vi where i, (r)=0 (for a mathematical proof of this statement,
P P see the Appendix Thus, if (r), which minimizesF[ ],
. vanished at any internal poimyeV,, then || is non-
=p § av A S, negative, it also minimize&[ ], and it has a minimum at
ro, clearly a contradiction. We may conclude from this that
o(r) never vanishes insidé, . Therefore, becausg,(r) is
+D0fv dV(Vy,- Vi), (19 a continuous function, it mpust have tlsame sign every-

P where and this can be chosen to be positive. Any other real
eigenfunction must have alternating positive and negative
values in order to be orthogonal tf,.

The nonconstant nature @fy(r) is dictated by the condi-

n (1.4), which must hold at the interface. Only far away

om the interface will this function be nearly constant. In

any case, if the porous mediumnsacroscopically homoge-

neous then g (r) will be macroscopically uniformand will

f dVy* g, =0 for w#A\. (1.6) not exhibit any tendency to be localized in some macro-
Vp

where there is no contribution in EqL.5 from a surface

integral overdV—this is ensured by the boundary condi-
tions there. From this it follows that the eigenvalues are rea{io
and that eigenfunctions corresponding to different eigenvalfr
ues are orthogonal:

scopic subvolume. The magnitude af will be O(1) every-
where in the pore space, and its Fourier transform
As usual, the eigenfunctions can be chosen to be mutually _ 1
orthogonal even when the eigenvalues are degenerate, and %(k)z_f dViy(rye 'k’ (1.13
they can be normalized so as to satisfy Vp Vo
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will have the following property in the case of a disordered (Vo) =¢,. (1.23
porous medium
Using the potential functiong (r), the bulk effective con-

o(0)=0(1), (1.14  quctivity tensor of this porous medium, can be calculated

3 from [15]

)1/2
\Tp> for k#0, (1.15

n‘[’o(k)zo( o eﬁ) 1
ety J VYV bo-V ), (1.24
wherea is a typical pore size. The second result follows by 0 Ve

considering the ensemble average| ¢f(k)|?, treating the  \where v is the total volume i.e., pore space plus matrix

microstructure  as  random, and assuming thakpace. Note that, althougi(r) is unboundedgh(r)—r is
(#ho(r)¢ho(r')) quickly relaxes to a constant value of order pounded. In fact, in the case of a periodic microstructure,
O(1) when|r—r’|>a. In the case of a medium with a pe- (1) —r is also periodic.

riodic_microstructure,io(r) will also be periodic. In that The equations fof [(1.20, (1.21] are equations for an-
casey(k) is nonzero only wherk is equal to one of the iher electric potential in the same conducting pore space,

reciprocal lattice vectorg, and theny,(g) =O(1). with the same values of the local conductivity, but in the
presence of a distribution of current sourdd®e rhs of Eq.
B. Low-lying extended eigenstates (1.20]. In order thatf be bounded and independent af
We now show that a set of |0W_|ying eigenstates exist'those current sources must average out to O, i.e., we must
which have the form have
In— g(1) = tho(r)€ T *[1+q-F(r)-q]+0(q?), (1.16 Ng=Xo+0-De-q+o0(a?), (1.29
A—Ng=Xo+0:-De-g+0(g?), (1.1  Where
: < ln. D& 1 vV '8
for small g, where f,4(r) is bounded andp,(r) is un ﬁ:_f dV¢§V¢a~V¢B=— B (1.26
bounded.[Actually, we can show that the errors in these Do V, A Vp o9

expressions ar®(q®) andO(qg*), respectively—see the Ap-

pendix] To that end, we substitute EQL.16) in Egs.(1.3)  |n order to fix f(r), we must also impose upon it some
and (1.4), and expand all quantities in powers @f except  boundary conditions at the external system surface. Those
for the exponential factoe'® #(": the special treatment of are best chosen in accordance with the boundary conditions
this factor is necessary because, in contrast with the fundmposed upon the eigenfunctions, e.g., either vanishing or
tions ¢o(r) and f(r), ¢(r) will turn out to be unbounded. periodic atdVe,. The result(1.26 means thaD, is simply
From the terms of ordey*, q* in the expansion, we find that rejated to the bulk effective conductivity tensag, of the
é(r), f(r) must satisfy the following equations: porous medium, where the matrix is perfectly insulating and
the pore space has a local conductivity equabai3(r).

2 —
V- (#V¢a)=0, reVy, (118 Thisresultis a rigorous generalization of a similar result that
B has long been known to hold in the case of iaatropic
(n-V)$,=0, redVvy, (119 porous medium whep=0 [as noted in Eq(1.12, in that

Y caseyy(r)=1][14,8. Here we have shown that E¢].26
V. [2V(a-F-a)1=|TV(a- &) 12+ -2 "9 2 holds for a porous medium @ rbitrary microstructureand

LvaVia-T-a]=|LV(a-¢)] Do Vo arbitrary values ofp. An important consequence of Eg.
(1.26) is that the eigenvalues @, are all less thaD, (see

reVp, (1.20 Appendix for a proof of this inequalily

(n-V)f=0, reav,. (1.21) g-De-q<Dyq2. (1.27

The equations forg,, [Egs. (1.18 and (1.19] are the The Fourier transform of,(r) for smallq is given by
same as the equations for an electric potential in the pore

space when the local conductivity ig,3(r) (oq is an ar-  ~ 1 . . _ u
bitrary constant with the physical dimensions. of electrical’pq(k)gv_pfv dve 'k Tyg(r)eld A1+ g-1(r)-q]
conductivity). In order to get a nontrivial solution fog,,, :

we will impose the following boundary condition at the ex- 1 ket =~

ternal surfacgother choices can also be used—see discus- ZV_L dve Yo(r) = o(k—0), (1.28
sion below and in the Appendix P

bo(f)=r,, redVe. (1.22 where we uged the fact that b(.ithind ¢—r are~boundec.I to
get the last line. Clearly, the differeneg,(k) — o(k—Qq) is
As a result of this condition, the volume averaged electricO(|q|a). Also, from the previous subsection it follows that
field produced by, (r) is the unit vector, : ¥q(4)=0(1), while (k) =0O[ (a%/V,)¥?] for q#k.
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We now recall thaty,(r) must also satisfy some bound-
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Here V, is the volume of a single unit cell and the sum

ary conditions at the external surface. It is easiest to useanges over all the lattice vectoasof the periodic system in

periodic boundary conditions in a cubic volume of sizé

This means thatjy(r) and f(r) must beL periodic in all
directions and that the values qfare limited to the follow-
ing discrete spectrum:

2

q=7"(Nx.Ny.Ny), ny,ny,n,=integers. (1.29

configuration space. Since the last integral is independent of
a, the sum vanishes unlegg=q. Since each of these sub-
spaces is a closed Hilbert space, the variational properties of
F[ ] that were described earlier hold separately in each of
them. In particular, any of the eigenvalugeg that lie in the
lowest band is given by the minimum &f ] over theq
subspace of functions of the for(i.32).

An upper bound foi 4 can thus be obtained by using the

Note that, if we assume a uniform boundary condition fortrial function

¢,(r) that differs from Eq.(1.22 by a multiplicative con-

stant, then that will changé, f and the spectrum of allowed
values ofq in such a way thaty, remains unchanged.

The states), are approximately orthogonal for smaj)
as can be seen by writing

* o 2 i(q'—q)-r
fvpdepq wq,_fvpdepO(r)e , (1.30

where we exploited the fact that boqﬁ‘ -g andg- (¢p—r)
are everywhere small. Sincg'(~q)-r only changes appre-

ciably over a length scale that is much greater than the typi

cal pore sizea, therefore we can replac¢§(r) approxi-

mately by its volume average over some intermediate scal
where the average already has an approximately unifor

value, and the remaining integral €f% ~% " over theentire
volume Vthen vanishes.
In the case that the porous medium hgseaodic micro-

structure the Bloch-Floquet theorem applies. This mean
thatall the eigenstates appear in bands and have the form

(1.3)

whereu,4(r) is a periodic function of, andq is a vector in

'r/fx_";bnq(r):unq(r)eiq'r, A—Nng>

the first Brillouin zone of reciprocal space. The lowest of

these bands has the forth 16 and(1.17) for smallq, where

wo(r) and f(r) are periodic functions, as is alshe differ-
encedg(r)—r.

C. Upper bound for A4

S

(1) = ho(r)€' s " (1.39
in F[ 4], resulting in
Ng<No+0-De-q. (1.35

This means that the four-dimensional hyperparabo{o,

the rhs of this equation which describes the behavior of

A4 accurately for smaly, lies entirely above that barfdr all

g.
In the case of a nonperiodic medium, this variational ar-

gument cannot be invoked because the low-lying states that

correspond to differerg vectors do not lie in disjoint Hilbert

ishaces. Nevertheless, we can still show lhglies below the

yperparaboloid1.25 at smallg by using the stationarity of
[¢] to calculate the next term in the expansion\gf
Noting that the error in Eq1.16) is 0(qg?), it is clear that
by using the stationary expressi@h11) we will get a result
for Ay with an error that is onho(g?. In this way we get,
after some tedious algebfaee Appendix for details

Ng=Not0-De-a—E{,,0a059,9,+0(q%), (1.36
whereE, is a positive, rank-4 tensor, given by

ES, 1
_eeYe — 2 . = 2
Dy fovpdeo(Vfa[, Vf,,)=0(a%). (1.37
The meaning of Eq(1.36 is that, even in a disordered po-
rous medium, a bound of the forit1.35 holds for suffi-
ciently smallg.

In the case of a periodic porous medium, the Hilbert space

of functions with square integrable first derivatives separates
naturally into disjoint, mutually orthogonal subspaces of

Bloch functionsys, characterized by a giveq vector

P(r)=u(r)e'er, (1.32

whereu(r) is periodic. This follows from the fact that two
Bloch functionsu(r)e'®", u’(r)e'? ", which are character-
ized by differentg vectors in the first Brillouin zone of re-
ciprocal space, are always orthogonal:

foqu*(r)u'(r)ei(q’—q)'r
\%

p

=2 ei(q'*q*af dVu (ryu’(r)el@-ar,
a VpNV,

pMVa

(1.33

D. Localized eigenstates

In a nonperiodic medium, there may exist some low-lying
eigenstates that are localized, even when there are no strictly
isolated pores. Those are states with eigenfunctigpgr)
that decay to exponentially small values outside a finite sub-
volume V.. The existence of such states is well known
from extensive discussions of the time-independent Schro
dinger equation in a random potentiakee, e.g., Ref.16]).

The problem of diffusion eigenstates in a disordered com-
posite medium is mathematically somewhat similar to that
problem.

In contrast with the extended stagg(r), none of these
localized states can produce a low-lying continuum of dis-
tinct states such agq(r) of Eq. (1.16: if we tried to use
0c INstead ofyg in Egs. (1.18—(1.22), we would find that
g- ¢(r) is approximately constant wherevei,(r) differs
appreciably from 0. Consequently, thepdependent state



55 DIFFUSION EIGENSTATES OF A POROUS MEDM .. . . 4239

would be given byy(r)e’® #D, and it would differ from  where, (k) is the Fourier transform of, (r), restricted to

Poe(r) just by a constant phase factor. the pore spac¥,
_ The magnitudes off,(r) and of its Fourier transform 1
(k) depend on the size of the subvoluivig: %(k)s V_f AV, (r)e kT 2.9
172 P Vp
P
lﬂ|0c(r)=O((W)) ' (1.38 The results of the previous section regarding low-lying
o eigenstates will now be used to determine the shape of
_ Vige| |12 M(k,t) at long timest.
Pod(k)=0 (V—OC) (1.39 Assuming that there arl,, localized states with eigen-
p value \ ., the contribution of those states M(Kk,t) is of
In the following section we shall see that these states do no(%rder

make a significant contribution to the diffusion in the pore NiocVioc
space at long times. ————e Mo, (2.9

Vo
Il. PHYSICAL CONSEQUENCES FOR DIFFUSION A similar estimation of the contribution of the extended
IN A POROUS MEDIUM states leads tpsee(1.14) and (1.15]

A. The diffusion propagator

=\t =gt (k=) |2
The diffusion propagato6(r,r’,t) is a solution of Egs. © \qzl/a e [Yo(k=a)]

(1.1 and (1.2 which satisfies the initial condition

G(r.r',0)=8%r—r"). 2.1) —e M

3

VtideD,
The importance of this function is due to the fact that, in\ye conclude that iNjocVioe/Vp<1 thenM(0yt) is deter-

phrinciplg, it containsall tlhe irr:formatignabogt diffusion in mined mostly by the low-lying extended states. Furthermore,
the medium. For example, the time-dependent spin polariza: . 3 BeD < _
tion of diffusing molecules, which is measured in a pulsed-If either NigoVioc/ Vp<a™/ Vi"deD, or t>1/(Ajoc—Ao), then

: : : i this continues to hold also favl (k,t). We also conclude that
radient spin-echdPGSH NMR experiment, is given by a . X S
gpatial FoErier transform of this pr%paga{ﬁr,l?]:g y the normalized PGSE amplitudé(k,t)/M (0,t) is given by

| Yo(0)| 26~ M0t 0

=

M(K,t)

1 . ) = (At g (k-Dg-K)t 51
M(k,t)zv—f dvf dV'G(r,r’,tye k= (2.9 MO0 e (2.11)
pJVy Vp

_ _ _ for alk|<1 and (deb.)'’*t>a% This means that the de-
The wave vectok in such an experiment is actually deter- crease oM (k,t) with increasingk| is less pronounced than
r_nmed by Fhe mqgngtlg field gradleﬁ’tH and the length qf one would expect just from the value Bf—this is in agree-
time & during which it is turned on ¥ is the gyromagnetic ment with numerical calculation@—10]. As k—0, the de-

ratio of the nuclear spin in questipn cay rateA,—\y in Eg. (2.11) tends to its upper bound

k=7y8VH, 23 kDeko _ _ .
A comparison of this result with Eq2.5) permits us to

while t is the time between successive gradient pulses.  identify D, as the tensor of bulk effective stationary diffu-
In a uniform fluid, bothG andM have simple Gaussian sion coefficients. The relation betwe&n, and o, which

shapes was derived earliefsee Eq.(1.26)], provides an alternative
a2 route for calculatingf)e—one that differs from the straight-
G(r,r’ t)=( 1 ) e (1—1")2/4Dgt (2.4 forward evaluation of the low-lying eigenstates which was
Y 47Dt ' ' used in Ref[9].

In periodic systems with cubic symmetry, as well as in
M(k,t):e—Dokzt_ (2.5  random porous media, it was found in calculations that, for
smallk and arbitrary times, the ratidl (k,t)/M(0,t) is well
In a fluid-filled porous medium, these functions have a muctflescribed by a Gaussian shape wittinae-dependengffec-
more complicated shape, but they always have simple expafive diffusion coefficientD(t) [17,18,8-10
sions in terms of the diffusion eigenstates
M (kvt) -D 2
o =e Pt (212

1 M(0,t) ’
G(rr =g e Mh(R(r), (26

pA whereD(0)=Dg andD(«)=D.<D,. (Note that, when the
system has either cubic or isotropic rotational symmetry,

M (K t)= e MU (K 2 2 D.=D,l is a scalar tensor.In all of those galculat_ions_,
(k) 2;’ [ (k) @7 D(t) was always found to decrease monotonically with time
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towardsD.. However, the above discussion indicates that|t is easy to show that the terms that were discarded in order
under certain circumstance§)(t) might undershoot this to derive this inequality ar®(a?/(Dyt)) compared to the
value, attaining a lower minimum value at some intermediatehs (see Appendix Furthermore, if either

time [see Eq(2.11) and the discussion surrounding. iThis

prediction is still waiting to be tested either by an experiment Nioc VtddeD <V (2.18

or by a numerical computation @&(t).
or

B. The return-to-the-origin probability 1

The fact that the low-lying eigenvalue bang lies below = Nioc— Mo (2.19

its asymptotic quadratic form0+q~lﬁe-q has important ) . o
consequences for the time-dependent relative return-to-thdlen the localized states make a negligible contribution. In
origin probability (RTOP of a surviving random walker in that case we get

the pore spacgl?2
p pacgl?] p(t|p)>£ DS w2 g >£ Dg 1/2>1 220
/ S e ° ¢\ detDs) |o(0)]2 ¢\ detD, o
(4mDt)%? X
Py(tlp)= 0 — . (213  where¢=V,/V is the total volume fraction of pore space,
P E |4, (0)|2e M and where we used the Cauchy-Schwartz inequality to get
A [equality holds only ifi(r)=1, i.e., whenp=0]

This quantity is equal to the probability that a particle, which - 1 2 1 5

diffuses through the fluid-filled pore space with interface ab-  |#o(0)]*= V_f dVio(r)| < V_f dViyrg(r)=1.

sorption, if it survives after a timg has returned to its initial P Ve PV (2.21)

position, divided by the probability for a similar event in the ‘

uniform fluid, where there are no interfaces and hence n@st—oc, P(t|p) tends to its long time lower bound of Eq.

decay of the diffusing particle other than bulk decay in the(2.20):

fluid. Using the fact that for a uniform fluid the eigenfunc-

tions are all plane waves, _ 1/ D3 \*? 1

lim Ps(t|p)=—( - ) = 5

z,b)\(r)—>e””, )\—>D0k2, (2.14 t—oo ¢ detD, | 0(0)|

(2.22

it is easy to verify that Eq(2.13 leads toP(t|p)=1 in that This result follows from Eq(2.13 by noting that, as ap-

case. For other systems, short time asymptotics show th oachesx_v, only the lowest-lying eigen.states contribute to
P(t|p) starts out at 1 wheb=0, and then increases a% the sums in both numerator and denominator, which can then
S — U,

for short times[12] ((1/R;+ 1/R,) is the sum of reciprocal be evaluated using Eg&l.25 and(1.28. The relative error

local radii of curvature of the interface, averaged over thelt?]c?soeviijnrﬁg Zyn;th:zéiersr‘]tcEzat ??Ongllg#;ejsselgor}?‘g;gtl%to
interface ’ y

the denominator. This leads to a relative error of order

0(@%(t3deD,) ¥, which tends to 0 as—o.
From Eg.(2.20, which holds for long times, and Eq.
(2.15, which holds for short times, we conclude that
S P.(t|p) is a nonmonotonicfunction of t. At short times it
><V—(D0t) +0((Dt)%?). (2.15 increases and overshoots its long time asymptote, reaching a
P maximum value at some intermediate time, which must

NEEES 1/1 1 p
_ v2_ | =
P (t|p)=1+ > Vp(Dot) 3 R1+R2 +Do

H 2 2 N \1/3
The discussion in the previous subsection showed that thg/early lie betweera®/D, and a”/(deD.)™, and then de-
sum in the denominator of Eq(2.13, which is just Creases towardBy(|p). This behavior has been found re-
M (0,t), is dominated by the extended states. The sum in th&ently both in experiments and in numerical calculations of
numerator has a contribution from the low-lying localized Ps(tlp) [13]. In that reference it was already shown that this

states, which can be estimated by kind of behavior must indeed occur in composites with a
periodic microstructure of cubic symmetry ape-0. Here
Nigee Moct, (2.1  We have shown that this behavior can be expected to occur

for any type of porous mediynwvhatever the microstructure

as well as a contribution from the low-lying extended statesand whatever the magnitude pf
which is given by
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APPENDIX it follows thatg, satisfies thé=0 spherical Bessel equation
We first prove that any real diffusion eigenstate can have
a local minimum(maximum only at a point where its value D 1d zdﬂﬂ\ ~0 (Ad)
is strictly negative(positive). To this end, let us first note °52dp"P dp 9=

that, for any functiony(r) that is twice differentiable inside
a sphere of radius surrounding the pointy, and for any Sinceg,(p) must be regular ap=0, therefore it must be
twice differentiable functiorf(p) that is nonzero only in a equal, up to a constant factor, to the spherical Bessel func-
proper subsegment p0,a], we can use Green’s theorem and tion
integration by parts oves to show that
Sinx
Jo(X)=—— : (A5)
f dVF(|r—ro|)V2y(r) X o2,
[r—rgl<a
a d d Sincejo(0)=1, andjy(x) is a strictly positive and strictly
=f dpf(p)d—pzd— dQy(r). decreasing function for €x<w/2, it clearly follows that
0 P8P Jir=rol=p 4, (r) can have a minimum(maximum) at ro, only if
(A1) (o) is strictly negative(positive).
We now derive the resultL.36) for A, by substituting the
It follows that expression(1.16) for ¢ in F[ 4] of Eq. (1.9), noting that
4 is not normalized, i.¢fthe fact that the error here can be

1d made as small as(q*) and not merelyo(g?) as one might
2 2
ﬁrr ‘zdeV P(r)= 02 @P dp ﬁrr |=de‘//(r)- have concluded from Ed1.16), is due to the possibility of
° ° (A2) adding an arbitrary constant tp f - g—see the discussion be-
low],

Denoting byg,(p) the similar angular average of any
solution of Eq.(1.3),

1 ,_ 1 2 22 4
V_f dV]yy| :V_f dVyg(1+q-f-q)“+o(q”). (A6)
pJVp P’ Vp

dQ
aw=$ T, w3
Ir=rol=p &7 In this way we get

1 D, R R .
—_— 2_ = —_— 2 . . 2 2 . 2 . . 2 . . 2
Aq\,JVpoIVquI —F[‘/fq]—vpjvpdv{(v%) (1+a- 102+ g3V (@ $ 121 +20-T-)+ g V(a-T-a)]
2000 Via T attat- o) ¢ asfa+aiarroa)
p Javp

_%f 2, P § 2
_Vp VpdV(Vwo) +Vp WpngbO (A7)

+%f dV{2(V 4i)2(q-T-a)+ ¢2[V(q- )12+ 2oV o-V(q-T- Q)
Volv, {2(Vho)*(q-T- @)+ 5L V(a- )17+ 2400V ¢ho- V(q-T- )}

+ 2§ as2fata) (A8)
p &Vp

D i ) A
+ _szv dV{(V)2(q-T-q)%+ 242 V(q- ) 1% T-q)+ v V(q-T-q) ]2
p

20V ho Vo Faa o) o § dsidai -l (A9)
p r?Vp

+o(q%), (A10)
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where Eqs(A7)—-(A10) represent terms of orde, g2, q*, ando(q*), respectively. The expression (A7) is clearly equal
to \y. The expressions in EGA8) can be transformed by using Green'’s theor€hg), (1.4), (1.18—(1.21), (1.26), and the

fact thatf is either periodic or vanishes avg,, to yield

D n A u .
02|, avi-2ua(v2un) - t-a)+ V@ e = 2 dvidaa oo bea (A1)
p Vp p Vp

Similar transformations, applied to the expressions in(&§), lead to

D F: i ~
V_sz dV{— oV20o(q- T a)2+ 243V (q- §)12(q- T-q) + 3 V(q-T- )12
p

A A Ag— A
=5 | dvida-t-a2e ==

R 1 R R -
v dvyg2(q-F-a)+- | dV2(a-F-q)V-[¢5V(a-T-a)]+ygV(a-f-a)1?
pJVp p Vp

pJVp

A n Ag—A a 1 a
=V—°f dV¢é<q~f-q>2+q\,—°f deéz<q~f-q>—v—f dVyg[V(a-f-a)]?
pJVp p Vp pJVy

A A q-I5 -q -
=V—°J dVyd(q-T-q)%+ V—ef dvy52(g-f-a)—E),,9.0,9,9.+0(q%), (A12)
pJVp p Vp

whereE, is given by Eq.(1.37. Using Eq.(A6) we finally get the result of Eq1.36.

We now show that the errors in Eg4..16 and (1.17) are actually smaller than the estimates quoted for them in those
equations.

To that end, we try the following expansions in powergyef|q| for the eigenfunctionj,(r) and eigenvalud :

lﬂq(r): lﬁo(r)eXF[iQ' ¢(r)+iqaqﬁqywaﬁy(r)]' [-’L_’_q:IE q+qaqﬂquwgaByw(r)]! (A13)

)\qz)\O+Q'f)e'q+)\3+)\4a (A14)

where) ;= 0(q3) andx,=0(q*) are real, and the functiorf§r), g(r) must be bounded, while Ing(r)], Im[ &(r)] must be
bounded from below, becaugg(r) is bounded. The functiong(r), w(r) are kept in the exponent, whichi®t expandedh
powers ofg. In the case ofp this is necessary, because that function is unbounded. We shall see belﬁw&h@ are all

bounded, but we nevertheless kaepn the exponent too, without expanding, for reasons of convenience.
Substituting these expansions in E¢k.3), (1.4), and satisfying those equations order by ordeq,inve get the following
equations that must be satisfied\ij or on dV,, respectively:

q°:DoV2o+ Noiho=0, Doi—ﬁow%:o, (A15)
qh:V-[¢5V(q- ¢)]=0, (;—f=0, (A16)
a%:V-[¥5V(a-T- 1=yl V(a- #)]*~q- De-a}, %=o, (AL7)
A%V [V (400,006, 1+ 205V (0 ) V(- F- @) =ihgy, i—;=o, (A18)
9% V- [¢5V (Aa059,909apye) 1= U5{([V(Q- $)]°=0-De-a)(q-T-a) +2V(q- ¢) - V(Aa0pdy0ap,) — o}, %=o.

(A19)
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The first pair of equationgA15) identifies 5, Ao as the Using Eq.(A17), the first term in those same curly brackets
ground-state quantities, while Egal16), (A17) are essen- can be rewritten asq( f-q)V-[43V(q-f-q)]. This means
tially the same as Eq$1.18—(1.21). These equations must that if we added some constafif to q~f~q, then that

be supplemented by boundary conditions at the external SUould |
. . to the replacemen
face 9V, for the various functions. In a large system, the ould lead to the replacement 0f.0s9,du9usye bY

boundary condition for), or ¢, can be any macroscopically 92959909 apyo fo(q-f-q). Thus, we can determirfg by
uniform boundary condition—we usually choose periodicdemanding that

boundary conditions. A boundary condition f@¥ that is

consistent with this, as well as with E(L.23), is

f dVy2g=0. (A25)
&(r)—r=(periodic forr e dV,). (A20) Ve

This determinesp(r) as a real vector function up to an un- If we use this option, then the normalization gf will sat-
important additive constant. isfy EQ. (AB).

In order to ensure thalt(r) is bounded, we must require  Turning again to(A19), we can ensure tha is bounded
that the rhs of the first equation 0A17) vanish when aver- by choosingh, so as to make the rhs of the first equation
aged over the pore space—this leads to the r¢su6 for  vanish when averaged. Using the last result together with

D.. It is also convenient and consistent to impose periodidAl7), we get
boundary conditions off(r):

1 o ~
f(r)=(periodic forr e dVy). (A21) M=o | dV(g-T-qV-[¢5V(q-T-0)]
V, A

These conditions determirfér) as a real tensor function up 1 .
to an arbitrary additive constant tensor. They also lead to the =— V—f de,/zg[V(q f-q)1°
result that the second term on the left-hand side of the first pJsVp

equation of(A18) vanishes when averaged: using Green's (e
theorem we get =~ Eu8y09.989,%0 - (A26)

2 o 2 From the above results, it is clear that the errors in Egs.
fvpdepOV(q #)-V(q-f-q) (1.16 and(1.17 are in factO(q®), O(q%), respectively, and
that in (1.36 the error iso(q*), as stated there.

- ) It is curious that\ 4 is an even function o, at least up to
- fv dvV(g-T-a)V-[45V(q- )] 0(g%. This symme?ry is also reflected in the eigenfunction
P (A13), where R, is even and Ing, is odd inq up to
L) . 0(g*. The reason for this behavior is unclear. In particular,
+ ﬁv + iv dSgp——(a-f-q). (A22)  inversion symmetry was not assumed to hold and therefore
p ex

4(r) does not, in general, exhibit any symmetry under

Here the integrands of the first and second integrals on th&Pace inversiom— —r. _ _
rhs vanish according to EGAL6), while the integrand of the !N order to prove the inequalityl.27, we note that
third integral vanishes due to Eq#20) and(A21). In order (1) can also be found by minimizing the functional

that Imw be bounded from below, we must haxg=0. If

we also impose upofm the periodic boundary condition 1 5
A Gl o=y | aviv@ P @2
o(r)=(periodic forr € V), (A23) P Ve

thenw will be a bounded real function, determined up to anover all vector functionsp’(r) that have square integrable
unimportant additive constant. As another consequence dffst derivatives and satisfy either EGh20) or Eq.(1.22 as
this boundary condition, the second term in the curly bracka boundary condition. The minimum value@f[ ¢'] is then
ets on the rhs of the first equation @19) can be shown to given byG [ ¢]=q- D.-q. Using ¢'(r)=r as trial function,
vanish when averaged, in the same way that we obtained Eqe get

(A22):

. . . Dog?
| avigvgvi—- | avov.wive) N R e
p p p p

., ¢
Ny Jave

.
dS¢2—w:0. In order to estimate the terms that were discarded on the

0
on rhs of Eq.(2.17), we reconsider the sum in that inequality,
(A24) using (1.36) and(1.37):

+
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_ _ &g .5
|Cl§1/ae )‘qtse )\OtVJ' We (q.De.q)t(l_l—E(aeﬁgwqaqﬁquwt)

Ve o 1 (e) A-1 -1 A -1 A -1 -1 -1
= —,\[14— TEaB'yw[(De )a,B(De )'ya)+(De )a'y(De )Bw+(De )aw(De )By]
(471)¥2\deD,
Ve*)\ot a2 ) J ( )
=—11+0| —|. A29
(47t)¥%\/deD, Dot
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