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Diffusion eigenstates of a porous medium with interface absorption
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The eigenvalues and general shapes of the low lying diffusion eigenstates are studied for the case of
diffusion in a fluid-filled porous medium of arbitrary, though macroscopically homogeneous, microstructure

with nonzero absorption at the pore walls. Those eigenstates are then used to discuss the tensorD̂e of bulk
effectivestationary diffusion coefficients and other aspects of the diffusion at long times, such as the pulsed-
gradient spin-echo amplitude and the return to the origin probability~RTOP!. It is shown that, under quite
general conditions the localized states are unimportant, and only the low-lying extended states make a signifi-
cant contribution to the long time behavior of these quantities. The eigenvalues or decay rates of those states

always have the formlq for small wave vectorsq, andlq is bounded from above byl01q•D̂e•q. A general

connection is found betweenD̂e and an electrical conductivity problem in the same medium. Using the bound
onlq , it is shown that the relative RTOP~i.e., the RTOP in a fluid-filled porous medium divided by the RTOP
in the uniform fluid! exhibits a nonmonotonic dependence on time, reaching a maximum at some finite
characteristic value. Similar considerations also lead to the possibility of nonmonotonic behavior of the bulk
effective time-dependentdiffusion coefficient.@S1063-651X~97!06404-0#

PACS number~s!: 05.60.1w, 66.10.Cb
ed
ny
ea
-

ed

i
ct

ur
e
r
e
n
m
th
te
i
e
th
he

ion
th
e
o
s

m

, a
ion-
an
uc-
ing

the
u-
of a
ruc-
as

the
n-
in
ion
by a

and
atic
en
ts

c-
g
e
ni-

nd
as
nt
ce
os-
ac-

we
es,
The problem of time-dependent diffusion in a restrict
pore spaceVp has recently come under increased scruti
This is due, in part, to the increased exploitation of nucl
magnetic resonance~NMR! methods for measuring the dif
fusion of ~nuclear spin! polarized molecules in a fluid-filled
porous medium@1–3#. Such measurements are perform
either in the presence of afixed ~i.e., time independent! gra-
dient of the spin aligning magnetic field@4#, or under appli-
cation of apulsed field gradient@5#. In the latter case, very
detailed information can be obtained about the diffusion
such a restricted pore space, and it can be drastically affe
by the microstructure@2,6,7#.

The simplest situation is when the diffusing particles s
vive indefinitely—there is no absorption of particles, or d
cay of the spin polarization, either inside the pore space o
the pore-matrix interface. A finite decay probability for th
diffusing particle poses no special problems if it has a u
form value throughout the pore space. However, if so
kind of decay can occur only at the pore-matrix interface,
theoretical treatment can be quite considerably complica
Such a decay phenomenon can be the result of a chem
reaction that occurs only at the interface, or a consequenc
the presence of paramagnetic ions in the matrix or at
interface, leading to an enhanced decay of polarization w
a spin polarized molecule reaches that interface@1#.

Theoretical and numerical studies of restricted diffus
often focus on the diffusion eigenstates. In particular, for
case of a porous medium with a periodic microstructure,
ficient techniques have been developed for computing th
eigenstates@8,9#. In this way, interesting physical quantitie
could be calculated, such as the~time-dependent! bulk effec-
tive diffusion coefficient@8–10#, spin polarization ampli-
tudes that are measured in an NMR spin-echo measure
in the presence of either a static field gradient@11# or a
pulsed field gradient@8–10#, and the return to the origin
probability ~RTOP! for a diffusing particle@12,13#.
551063-651X/97/55~4!/4235~10!/$10.00
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In the case where there is no decay at the interface
connection has long been known to exist between the stat
ary diffusion problem in such a medium, where diffusion c
only take place in the pore space, and the electrical cond
tion problem, where only the pore space is conduct
@14,8#.

In this paper, we study some general properties of
low-lying diffusion eigenstates of the time-dependent diff
sion problem in a porous medium. We consider the case
general, though macroscopically homogeneous, microst
ture, thus our results apply to disordered porous media
well as to periodic ones. We also allow for absorption at
interface. We identify a class of low-lying extended eige
states that govern the bulk effective stationary diffusion
the porous medium, as well as the time-dependent diffus
at long times. The eigenvalues of those states are given
dispersion expressionlq , whereq is a wave vector that is
small compared to the inverse size of the typical pores,
lq is shown to be bounded from above by a simple quadr
function ofq. We derive a very general connection betwe
the tensor of bulk effective stationary diffusion coefficien
D̂e and the bulk effective conductivity tensorŝe of a certain
conductivity problem in a medium with the same microstru
ture. The upper bound onlq leads to predictions regardin
the behavior of a particle diffusing in the fluid-filled por
space: the RTOP, when normalized by the RTOP in a u
form fluid, is a nonmonotonic function of timet, which in-
creases witht at smallt, then reaches a maximum value, a
finally decreases towards an asymptotic constant value
t→`. It is also shown that the bulk effective time-depende
diffusion coefficient can exhibit a nonmonotonic dependen
on time under certain conditions. Finally, we discuss the p
sible influence of localized diffusion eigenstates on the m
roscopic diffusion.

The rest of this paper is organized as follows: In Sec. I
discuss the properties of the low-lying diffusion eigenstat
4235 © 1997 The American Physical Society
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4236 55DAVID J. BERGMAN
both extended and localized, and derive an upper bound
lq . We also derive the connection betweenD̂e and ŝe . In
Sec. II we discuss some physical implications for the dif
sion propagator and its Fourier transform, forD̂e , and for
the normalized RTOP. In the Appendix we provide proo
for some of the more technical points mentioned in this
per, and point out a curious, unexplained symmetry oflq
and its associated eigenstates.

I. BASIC THEORY OF THE DIFFUSION EIGENSTATES

The time-dependent diffusion in a porous medium w
interface absorption is described by the following equatio
for the densityn(r ,t) of the diffusing particles:

]n

]t
5D0¹

2n for rPVp , ~1.1!

05D0n•“n1rn for rP]Vp , ~1.2!

whereVp is the pore space,]Vp is the pore-matrix interface
n is the outward pointing~from pore to matrix! normal vec-
tor at the interface,D0 is the diffusion coefficient in the
uniform fluid, andr is the interface absorption coefficient

The diffusion eigenfunctions are solutions of the for
cl(r )e

2lt, wherel is the eigenvalue andcl(r ) satisfies the
following equations:

lcl1D0¹
2cl50, rPVp , ~1.3!

D0n•“cl1rcl50, rP]Vp , ~1.4!

as well as some macroscopically uniform boundary con
tions at the external surface of the system, which we den
by ]Vex. As usual in such cases, the precise nature of th
boundary conditions is unimportant, provided that the sys
size is much larger than the typical pore sizes.

From these equations we easily get

lE
Vp

dVcv*cl52D0E
Vp

dVcv*¹2cl

5r R ]Vp
dScv*cl

1D0E
Vp

dV~“cv* •“cl!, ~1.5!

where there is no contribution in Eq.~1.5! from a surface
integral over]Vex—this is ensured by the boundary cond
tions there. From this it follows that the eigenvalues are r
and that eigenfunctions corresponding to different eigen
ues are orthogonal:

E
Vp

dVcv*cl50 for vÞl. ~1.6!

As usual, the eigenfunctions can be chosen to be mutu
orthogonal even when the eigenvalues are degenerate
they can be normalized so as to satisfy
or
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Vp
E
Vp

dVcv*cl5dvl . ~1.7!

From Eq.~1.5! it also follows that

lE
Vp

dVuclu25r R ]Vp
dSuclu21D0E

Vp

dVu“clu2,

~1.8!

and therefore thatl.0, unlesscl[ const andr50, in
which casel50. If we treat the right-hand side~rhs! of this
equation as a quadratic functional, namely,

F@c#[
r

Vp
R ]Vp

dSucu21
D0

Vp
E
Vp

dVu“cu2, ~1.9!

then the requirement thatF@c# be stationary~i.e., that its
first variation vanishesdF@c#50), in the space of normal
ized functionsc(r ) that have square integrable~partial! first
derivatives inVp, is equivalent to Eqs.~1.3!, ~1.4!, and~1.7!.
The eigenfunctions will have continuous first and seco
partial derivatives throughoutVp .

The eigenvaluesl can also be calculated from

l5F@cl#. ~1.10!

Moreover, because of the variational property ofF@c#, when
l is calculated in this way, a small errore(r ) in cl(r ) leads
to only ahigher ordererror inl,

F@cl1e#5l1O~e2!. ~1.11!

A. The lowest eigenstate

The lowest eigenvalue, denoted byl0, is just the mini-
mum value of the functionalF@c#. Whenr50, that eigen-
value and its eigenfunctionc0(r ) are given by

l050, c0~r ![1 for r50, ~1.12!

but when rÞ0, then l0.0 and c0(r )Þ const. We can
show, however, thatc0(r ).0 throughoutVp .

In order to prove this, we first note thatF@c#5F@ ucu# for
any real c(r ). Also, sincel.0, any real eigenfunction
cl(r ) cannot have a local minimum at any internal po
wherecl(r )>0 ~for a mathematical proof of this statemen
see the Appendix!. Thus, if c0(r ), which minimizesF@c#,
vanished at any internal pointr0PVp , then uc0u is non-
negative, it also minimizesF@c#, and it has a minimum a
r0, clearly a contradiction. We may conclude from this th
c0(r ) never vanishes insideVp . Therefore, becausec0(r ) is
a continuous function, it must have thesame sign every-
where, and this can be chosen to be positive. Any other r
eigenfunction must have alternating positive and nega
values in order to be orthogonal toc0.

The nonconstant nature ofc0(r ) is dictated by the condi-
tion ~1.4!, which must hold at the interface. Only far awa
from the interface will this function be nearly constant.
any case, if the porous medium ismacroscopically homoge
neous, thenc0(r ) will be macroscopically uniform, and will
not exhibit any tendency to be localized in some mac
scopic subvolume. The magnitude ofc0 will be O(1) every-
where in the pore space, and its Fourier transform

c̃0~k![
1

Vp
E
Vp

dVc0~r !e
2 ik•r ~1.13!
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55 4237DIFFUSION EIGENSTATES OF A POROUS MEDIUM . . .
will have the following property in the case of a disorder
porous medium

c̃0~0!5O~1!, ~1.14!

c̃0~k!5OXS a3Vp
D C1/2 for kÞ0, ~1.15!

wherea is a typical pore size. The second result follows
considering the ensemble average ofuc̃0(k)u2, treating the
microstructure as random, and assuming t
^c0(r )c0(r 8)& quickly relaxes to a constant value of ord
O(1) whenur2r 8u.a. In the case of a medium with a pe
riodic microstructure,c0(r ) will also be periodic. In that
casec̃0(k) is nonzero only whenk is equal to one of the
reciprocal lattice vectorsg, and thenc̃0(g)5O(1).

B. Low-lying extended eigenstates

We now show that a set of low-lying eigenstates ex
which have the form

cl→cq~r !5c0~r !e
iq•f~r !@11q• f̂ ~r !•q#1o~q2!, ~1.16!

l→lq5l01q•D̂e•q1o~q2!, ~1.17!

for small q, where f ab(r ) is bounded andfa(r ) is un-
bounded.@Actually, we can show that the errors in the
expressions areO(q3) andO(q4), respectively—see the Ap
pendix.# To that end, we substitute Eq.~1.16! in Eqs. ~1.3!
and ~1.4!, and expand all quantities in powers ofq, except
for the exponential factoreiq•f(r ): the special treatment o
this factor is necessary because, in contrast with the fu
tions c0(r ) and f̂ (r ), f(r ) will turn out to be unbounded
From the terms of orderq1, q2 in the expansion, we find tha
f(r ), f̂ (r ) must satisfy the following equations:

“•~c0
2
“fa!50, rPVp , ~1.18!

~n•“ !fa50, rP]Vp , ~1.19!

“•@c0
2
“~q• f̂ •q!#5S @“~q•f!#21

l02lq

D0
Dc0

2 ,

rPVp , ~1.20!

~n•“ ! f̂50, rP]Vp . ~1.21!

The equations forfa @Eqs. ~1.18! and ~1.19!# are the
same as the equations for an electric potential in the p
space when the local conductivity iss0c0

2(r ) (s0 is an ar-
bitrary constant with the physical dimensions of electri
conductivity!. In order to get a nontrivial solution forfa ,
we will impose the following boundary condition at the e
ternal surface~other choices can also be used—see disc
sion below and in the Appendix!

fa~r !5r a , rP]Vex. ~1.22!

As a result of this condition, the volume averaged elec
field produced byfa(r ) is the unit vectorea :
t

t,

c-

re

l

s-

c

^“fa&5ea . ~1.23!

Using the potential functionsfa(r ), the bulk effective con-
ductivity tensor of this porous mediumŝe can be calculated
from @15#

sab
~e!

s0
5
1

VEVpdVc0
2~“fa•“fb!, ~1.24!

where V is the total volume, i.e., pore space plus matri
space. Note that, althoughf(r ) is unbounded,f(r )2r is
bounded. In fact, in the case of a periodic microstructu
f(r )2r is also periodic.

The equations forf̂ @~1.20!, ~1.21!# are equations for an
other electric potential in the same conducting pore spa
with the same values of the local conductivity, but in t
presence of a distribution of current sources@the rhs of Eq.
~1.20!#. In order that f̂ be bounded and independent ofq,
those current sources must average out to 0, i.e., we m
have

lq5l01q•D̂e•q1o~q2!, ~1.25!

where

Dab
~e!

D0
5

1

Vp
E
Vp

dVc0
2
“fa•“fb5

V

Vp

sab
~e!

s0
. ~1.26!

In order to fix f̂ (r ), we must also impose upon it som
boundary conditions at the external system surface. Th
are best chosen in accordance with the boundary condit
imposed upon the eigenfunctions, e.g., either vanishing
periodic at]Vex. The result~1.26! means thatD̂e is simply
related to the bulk effective conductivity tensorŝe of the
porous medium, where the matrix is perfectly insulating a
the pore space has a local conductivity equal tos0c0

2(r ).
This result is a rigorous generalization of a similar result t
has long been known to hold in the case of anisotropic
porous medium whenr50 @as noted in Eq.~1.12!, in that
casec0(r )[1# @14,8#. Here we have shown that Eq.~1.26!
holds for a porous medium ofarbitrary microstructureand
arbitrary values ofr. An important consequence of Eq
~1.26! is that the eigenvalues ofD̂e are all less thanD0 ~see
Appendix for a proof of this inequality!,

q•D̂e•q<D0q
2. ~1.27!

The Fourier transform ofcq(r ) for smallq is given by

c̃q~k!>
1

Vp
E
Vp

dVe2 i ~k2q!•rc0~r !e
iq•f[ ~r !2r ]@11q• f̂ ~r !•q#

>
1

Vp
E
Vp

dVe2 i ~k2q!•rc0~r !5c̃0~k2q!, ~1.28!

where we used the fact that bothf̂ andf2r are bounded to
get the last line. Clearly, the differencec̃q(k)2c̃0(k2q) is
O(uqua). Also, from the previous subsection it follows th
c̃q(q)5O(1), while c̃q(k)5O@(a3/Vp)

1/2# for qÞk.
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4238 55DAVID J. BERGMAN
We now recall thatcq(r ) must also satisfy some bound
ary conditions at the external surface. It is easiest to
periodic boundary conditions in a cubic volume of sizeL3.
This means thatc0(r ) and f̂ (r ) must beL periodic in all
directions and that the values ofq are limited to the follow-
ing discrete spectrum:

q5
2p

L
~nx ,ny ,nz!, nx ,ny ,nz5 integers. ~1.29!

Note that, if we assume a uniform boundary condition
fa(r ) that differs from Eq.~1.22! by a multiplicative con-
stant, then that will changef, f̂ and the spectrum of allowe
values ofq in such a way thatcq remains unchanged.

The statescq are approximately orthogonal for smallq,
as can be seen by writing

E
Vp

dVcq*cq8>E
Vp

dVc0
2~r !ei ~q82q!•r, ~1.30!

where we exploited the fact that bothq• f̂ •q andq•(f2r )
are everywhere small. Since (q82q)•r only changes appre
ciably over a length scale that is much greater than the t
cal pore sizea, therefore we can replacec0

2(r ) approxi-
mately by its volume average over some intermediate sc
where the average already has an approximately unif
value, and the remaining integral ofei (q82q)•r over theentire
volume Vthen vanishes.

In the case that the porous medium has aperiodic micro-
structure, the Bloch-Floquet theorem applies. This mea
thatall the eigenstates appear in bands and have the for

cl→cnq~r !5unq~r !e
iq•r, l→lnq , ~1.31!

whereunq(r ) is a periodic function ofr , andq is a vector in
the first Brillouin zone of reciprocal space. The lowest
these bands has the form~1.16! and~1.17! for smallq, where
c0(r ) and f̂ (r ) are periodic functions, as is alsothe differ-
encef(r )2r .

C. Upper bound for lq

In the case of a periodic porous medium, the Hilbert sp
of functions with square integrable first derivatives separa
naturally into disjoint, mutually orthogonal subspaces
Bloch functionsc, characterized by a givenq vector

c~r !5u~r !eiq•r, ~1.32!

whereu(r ) is periodic. This follows from the fact that two
Bloch functionsu(r )eiq•r, u8(r )eiq8•r, which are character
ized by differentq vectors in the first Brillouin zone of re
ciprocal space, are always orthogonal:

E
Vp

dVu* ~r !u8~r !ei ~q82q!•r

5(
a
ei ~q82q!•aE

VpùVa

dVu* ~r !u8~r !ei ~q82q!•r.

~1.33!
e

r

i-

le,
m

s

f

e
s
f

Here Va is the volume of a single unit cell and the su
ranges over all the lattice vectorsa of the periodic system in
configuration space. Since the last integral is independen
a, the sum vanishes unlessq85q. Since each of these sub
spaces is a closed Hilbert space, the variational propertie
F@c# that were described earlier hold separately in each
them. In particular, any of the eigenvalueslq that lie in the
lowest band is given by the minimum ofF@c# over theq
subspace of functions of the form~1.32!.

An upper bound forlq can thus be obtained by using th
trial function

cq~r ![c0~r !e
iq•f~r ! ~1.34!

in F@c#, resulting in

lq,l01q•D̂e•q. ~1.35!

This means that the four-dimensional hyperparaboloid~i.e.,
the rhs of this equation!, which describes the behavior o
lq accurately for smallq, lies entirely above that bandfor all
q.

In the case of a nonperiodic medium, this variational
gument cannot be invoked because the low-lying states
correspond to differentq vectors do not lie in disjoint Hilbert
spaces. Nevertheless, we can still show thatlq lies below the
hyperparaboloid~1.25! at smallq by using the stationarity of
F@c# to calculate the next term in the expansion oflq .

Noting that the error in Eq.~1.16! is o(q2), it is clear that
by using the stationary expression~1.11! we will get a result
for lq with an error that is onlyo(q4). In this way we get,
after some tedious algebra~see Appendix for details!,

lq5l01q•D̂e•q2Eabgv
~e! qaqbqgqv1o~q4!, ~1.36!

whereÊe is a positive, rank-4 tensor, given by

Eabgv
~e!

D0
[

1

Vp
E
Vp

dVc0
2~“ f ab•“ f gv!5O~a2!. ~1.37!

The meaning of Eq.~1.36! is that, even in a disordered po
rous medium, a bound of the form~1.35! holds for suffi-
ciently smallq.

D. Localized eigenstates

In a nonperiodic medium, there may exist some low-lyi
eigenstates that are localized, even when there are no str
isolated pores. Those are states with eigenfunctionsc loc(r )
that decay to exponentially small values outside a finite s
volume Vloc . The existence of such states is well know
from extensive discussions of the time-independent Sch¨-
dinger equation in a random potential~see, e.g., Ref.@16#!.
The problem of diffusion eigenstates in a disordered co
posite medium is mathematically somewhat similar to t
problem.

In contrast with the extended statec0(r ), none of these
localized states can produce a low-lying continuum of d
tinct states such ascq(r ) of Eq. ~1.16!: if we tried to use
c loc instead ofc0 in Eqs.~1.18!–~1.22!, we would find that
q•f(r ) is approximately constant whereverc loc(r ) differs
appreciably from 0. Consequently, theq-dependent state
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would be given byc loc(r )e
iq•f(r ), and it would differ from

c loc(r ) just by a constant phase factor.
The magnitudes ofc loc(r ) and of its Fourier transform

c̃ loc(k) depend on the size of the subvolumeVloc :

c loc~r !5OXS Vp

Vloc
D C1/2, ~1.38!

c̃ loc~k!5OXSVloc

Vp
D C1/2. ~1.39!

In the following section we shall see that these states do
make a significant contribution to the diffusion in the po
space at long times.

II. PHYSICAL CONSEQUENCES FOR DIFFUSION
IN A POROUS MEDIUM

A. The diffusion propagator

The diffusion propagatorG(r ,r 8,t) is a solution of Eqs.
~1.1! and ~1.2! which satisfies the initial condition

G~r ,r 8,0!5d3~r2r 8!. ~2.1!

The importance of this function is due to the fact that,
principle, it containsall the informationabout diffusion in
the medium. For example, the time-dependent spin polar
tion of diffusing molecules, which is measured in a pulse
gradient spin-echo~PGSE! NMR experiment, is given by a
spatial Fourier transform of this propagator@3,17#:

M ~k,t ![
1

Vp
E
Vp

dVE
Vp

dV8G~r ,r 8,t !e2 ik•~r2r8!. ~2.2!

The wave vectork in such an experiment is actually dete
mined by the magnetic field gradient“H and the length of
time d during which it is turned on (g is the gyromagnetic
ratio of the nuclear spin in question!

k5gd“H, ~2.3!

while t is the time between successive gradient pulses.
In a uniform fluid, bothG andM have simple Gaussia

shapes

G~r ,r 8,t !5S 1

4pD0t
D 3/2e2~r2r8!2/4D0t, ~2.4!

M ~k,t !5e2D0k
2t. ~2.5!

In a fluid-filled porous medium, these functions have a mu
more complicated shape, but they always have simple ex
sions in terms of the diffusion eigenstates

G~r ,r 8,t !5
1

Vp
(
l

e2ltcl~r !cl* ~r 8!, ~2.6!

M ~k,t !5(
l

e2ltuc̃l~k!u2, ~2.7!
ot

a-
-

h
n-

wherec̃l(k) is the Fourier transform ofcl(r ), restricted to
the pore spaceVp

c̃l~k![
1

Vp
E
Vp

dVcl~r !e2 ik•r. ~2.8!

The results of the previous section regarding low-lyi
eigenstates will now be used to determine the shape
M (k,t) at long timest.

Assuming that there areNloc localized states with eigen
valuel loc , the contribution of those states toM (k,t) is of
order

NlocVloc

Vp
e2l loct. ~2.9!

A similar estimation of the contribution of the extende
states leads to@see~1.14! and ~1.15!#

e2l0t (
uqu!1/a

e2~lq2l0!tuc̃0~k2q!u2

5e2l0tF uc̃0~0!u2e2~lk2l0!t1OS a3

At3detD̂e

D G . ~2.10!

We conclude that, ifNlocVloc /Vp!1 thenM (0,t) is deter-
mined mostly by the low-lying extended states. Furthermo

if eitherNlocVloc /Vp!a3/At3detD̂e or t@1/(l loc2l0), then
this continues to hold also forM (k,t). We also conclude tha
the normalized PGSE amplitudeM (k,t)/M (0,t) is given by

M ~k,t !

M ~0,t !
>e2~lk2l0!t.e2~k•D̂e•k!t ~2.11!

for auku!1 and (detD̂e)
1/3t@a2. This means that the de

crease ofM (k,t) with increasinguku is less pronounced tha
one would expect just from the value ofD̂e—this is in agree-
ment with numerical calculations@8–10#. As k→0, the de-
cay ratelk2l0 in Eq. ~2.11! tends to its upper bound
k•D̂e•k.

A comparison of this result with Eq.~2.5! permits us to
identify D̂e as the tensor of bulk effective stationary diffu
sion coefficients. The relation betweenD̂e and ŝe , which
was derived earlier@see Eq.~1.26!#, provides an alternative
route for calculatingD̂e—one that differs from the straight
forward evaluation of the low-lying eigenstates which w
used in Ref.@9#.

In periodic systems with cubic symmetry, as well as
random porous media, it was found in calculations that,
smallk and arbitrary times, the ratioM (k,t)/M (0,t) is well
described by a Gaussian shape with atime-dependenteffec-
tive diffusion coefficientD(t) @17,18,8–10#

M ~k,t !

M ~0,t !
>e2D~ t !k2t, ~2.12!

whereD(0)5D0 andD(`)5De,D0. ~Note that, when the
system has either cubic or isotropic rotational symme
D̂e5DeÎ is a scalar tensor.! In all of those calculations,
D(t) was always found to decrease monotonically with tim
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towardsDe . However, the above discussion indicates th
under certain circumstances,D(t) might undershoot this
value, attaining a lower minimum value at some intermedi
time @see Eq.~2.11! and the discussion surrounding it#. This
prediction is still waiting to be tested either by an experim
or by a numerical computation ofD(t).

B. The return-to-the-origin probability

The fact that the low-lying eigenvalue bandlq lies below
its asymptotic quadratic forml01q•D̂e•q has important
consequences for the time-dependent relative return-to-
origin probability ~RTOP! of a surviving random walker in
the pore space@12#

Ps~ tur!5
~4pD0t !

3/2

Vp

(
l

e2lt

(
l

uc̃l~0!u2e2lt

. ~2.13!

This quantity is equal to the probability that a particle, whi
diffuses through the fluid-filled pore space with interface a
sorption, if it survives after a timet, has returned to its initia
position, divided by the probability for a similar event in th
uniform fluid, where there are no interfaces and hence
decay of the diffusing particle other than bulk decay in t
fluid. Using the fact that for a uniform fluid the eigenfun
tions are all plane waves,

cl~r !→eik•r, l→D0k
2, ~2.14!

it is easy to verify that Eq.~2.13! leads toPs(tur)[1 in that
case. For other systems, short time asymptotics show
Ps(tur) starts out at 1 whent50, and then increases asAt
for short times@12# (^1/R111/R2& is the sum of reciproca
local radii of curvature of the interface, averaged over
interface!

Ps~ tur!511
Ap

2

S

Vp
~D0t !

1/22F13 K 1

R1
1

1

R2
L 1

r

D0
G

3
S

Vp
~D0t !1O„~D0t !

3/2
…. ~2.15!

The discussion in the previous subsection showed tha
sum in the denominator of Eq.~2.13!, which is just
M (0,t), is dominated by the extended states. The sum in
numerator has a contribution from the low-lying localiz
states, which can be estimated by

Nloce
2l loct, ~2.16!

as well as a contribution from the low-lying extended stat
which is given by

(
uqu!1/a

e2lqt.e2l0tVE d3q

~2p!3
e2~q•D̂e•q!t

5
Ve2l0t

~4pt !3/2AdetD̂e

. ~2.17!
t,

e

t

e-

-

o
e

at

e

he

e

,

It is easy to show that the terms that were discarded in o
to derive this inequality areO„a2/(D0t)… compared to the
rhs ~see Appendix!. Furthermore, if either

NlocAt3detD̂e!V ~2.18!

or

t@
1

l loc2l0
, ~2.19!

then the localized states make a negligible contribution.
that case we get

Ps~ tur!.
1

f S D0
3

detD̂e
D 1/2 1

uc̃0~0!u2
>
1

f S D0
3

detD̂e
D 1/2.1, ~2.20!

wheref[Vp /V is the total volume fraction of pore spac
and where we used the Cauchy-Schwartz inequality to
@equality holds only ifc0(r )[1, i.e., whenr50]

uc̃0~0!u25U 1Vp
E
Vp

dVc0~r !U2< 1

Vp
E
Vp

dVc0
2~r !51.

~2.21!

As t→`, Ps(tur) tends to its long time lower bound of Eq
~2.20!:

lim
t→`

Ps~ tur!5
1

f S D0
3

detD̂e
D 1/2 1

uc̃0~0!u2
. ~2.22!

This result follows from Eq.~2.13! by noting that, ast ap-
proaches̀ , only the lowest-lying eigenstates contribute
the sums in both numerator and denominator, which can t
be evaluated using Eqs.~1.25! and~1.28!. The relative error
is governed by the largestq that contributes significantly to
those sums, and arises mostly from the use of Eq.~1.28! in
the denominator. This leads to a relative error of ord
O„a3/(t3detD̂e)

1/2
…, which tends to 0 ast→`.

From Eq. ~2.20!, which holds for long times, and Eq
~2.15!, which holds for short times, we conclude th
Ps(tur) is a nonmonotonicfunction of t. At short times it
increases and overshoots its long time asymptote, reachi
maximum value at some intermediate time, which m
clearly lie betweena2/D0 and a

2/(detD̂e)
1/3, and then de-

creases towardsPs(`ur). This behavior has been found re
cently both in experiments and in numerical calculations
Ps(tur) @13#. In that reference it was already shown that th
kind of behavior must indeed occur in composites with
periodic microstructure of cubic symmetry andr50. Here
we have shown that this behavior can be expected to o
for any type of porous medium, whatever the microstructure
and whatever the magnitude ofr.
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APPENDIX

We first prove that any real diffusion eigenstate can h
a local minimum~maximum! only at a point where its value
is strictly negative~positive!. To this end, let us first note
that, for any functionc(r ) that is twice differentiable inside
a sphere of radiusa surrounding the pointr0, and for any
twice differentiable functionf (r) that is nonzero only in a
proper subsegment of@0,a#, we can use Green’s theorem an
integration by parts overr to show that

E
ur2r0u,a

dV f~ ur2r0u!¹2c~r !

5E
0

a

dr f ~r!
d

dr
r2

d

dr R
ur2r0u5r

dVc~r !.

~A1!

It follows that

R
ur2r0u5r

dV¹2c~r !5
1

r2
d

dr
r2

d

dr R
ur2r0u5r

dVc~r !.

~A2!

Denoting bygl(r) the similar angular average of an
solution of Eq.~1.3!,

gl~r![ R
ur2r0u5r

dV

4p
cl~r !, ~A3!
e

it follows thatgl satisfies thel50 spherical Bessel equatio

D0

1

r2
d

dr
r2
dgl

dr
1lgl50. ~A4!

Sincegl(r) must be regular atr50, therefore it must be
equal, up to a constant factor, to the spherical Bessel fu
tion

j 0~x!5
sinx

x U
x5~l/D0!1/2r

. ~A5!

Since j 0(0)51, and j 0(x) is a strictly positive and strictly
decreasing function for 0,x,p/2, it clearly follows that
cl(r ) can have a minimum~maximum! at r0 only if
cl(r0) is strictly negative~positive!.

We now derive the result~1.36! for lq by substituting the
expression~1.16! for cq in F@cq# of Eq. ~1.9!, noting that
cq is not normalized, i.e.@the fact that the error here can b
made as small aso(q4) and not merelyo(q2) as one might
have concluded from Eq.~1.16!, is due to the possibility of
adding an arbitrary constant toq• f̂ •q–see the discussion be
low#,

1

Vp
E
Vp

dVucqu25
1

Vp
E
Vp

dVc0
2~11q• f̂ •q!21o~q4!. ~A6!

In this way we get
lq

1

Vp
E
Vp

dVucqu25F@cq#5
D0

Vp
E
Vp

dV$~“c0!
2~11q• f̂ •q!21c0

2@“~q•f!#2~112q• f̂ •q!1c0
2@“~q• f̂ •q!#2

12c0“c0•“~q• f̂ •q!~11q• f̂ •q!%1
r

Vp
R

]Vp

dSc0
2~11q• f̂ •q!21o~q4!

5
D0

Vp
E
Vp

dV~“c0!
21

r

Vp
R

]Vp

dSc0
2 ~A7!

1
D0

Vp
E
Vp

dV$2~“c0!
2~q• f̂ •q!1c0

2@“~q•f!#212c0“c0•“~q• f̂ •q!%

1
r

Vp
R

]Vp

dS2c0
2~q• f̂ •q! ~A8!

1
D0

Vp
E
Vp

dV$~“c0!
2~q• f̂ •q!212c0

2@“~q•f!#2~q• f̂ •q!1c0
2@“~q• f̂ •q!#2

12c0“c0•“~q• f̂ •q!~q• f̂ •q!%1
r

Vp
R

]Vp

dSc0
2~q• f̂ •q!2 ~A9!

1o~q4!, ~A10!
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where Eqs.~A7!–~A10! represent terms of orderq0, q2, q4, ando(q4), respectively. The expression in~A7! is clearly equal
to l0. The expressions in Eq.~A8! can be transformed by using Green’s theorem,~1.3!, ~1.4!, ~1.18!–~1.21!, ~1.26!, and the
fact that f̂ is either periodic or vanishes at]Vex, to yield

D0

Vp
E
Vp

dV$22c0~¹2c0!~q• f̂ •q!1c0
2@“~q•f!#2%5

l0

Vp
E
Vp

dVc0
22~q• f̂ •q!1q•D̂e•q. ~A11!

Similar transformations, applied to the expressions in Eq.~A9!, lead to

D0

Vp
E
Vp

dV$2c0¹
2c0~q• f̂ •q!212c0

2@“~q•f!#2~q• f̂ •q!1c0
2@“~q• f̂ •q!#2%

5
l0

Vp
E
Vp

dVc0
2~q• f̂ •q!21

lq2l0

Vp
E
Vp

dVc0
22~q• f̂ •q!1

1

Vp
E
Vp

dV$2~q• f̂ •q!“•@c0
2
“~q• f̂ •q!#1c0

2@“~q• f̂ •q!#2%

5
l0

Vp
E
Vp

dVc0
2~q• f̂ •q!21

lq2l0

Vp
E
Vp

dVc0
22~q• f̂ •q!2

1

Vp
E
Vp

dVc0
2@“~q• f̂ •q!#2

5
l0

Vp
E
Vp

dVc0
2~q• f̂ •q!21

q•D̂e•q

Vp
E
Vp

dVc0
22~q• f̂ •q!2Eabgv

~e! qaqbqgqv1o~q4!, ~A12!

whereÊe is given by Eq.~1.37!. Using Eq.~A6! we finally get the result of Eq.~1.36!.
We now show that the errors in Eqs.~1.16! and ~1.17! are actually smaller than the estimates quoted for them in th

equations.
To that end, we try the following expansions in powers ofq[uqu for the eigenfunctioncq(r ) and eigenvaluelq :

cq~r !5c0~r !exp@ iq•f~r !1 iqaqbqgvabg~r !#•@11q• f̂ •q1qaqbqgqvgabgv~r !#, ~A13!

lq5l01q•D̂e•q1l31l4 , ~A14!

wherel35O(q3) andl45O(q4) are real, and the functionsf̂ (r ), ĝ(r ) must be bounded, while Im@f(r )#, Im@v̂(r )# must be
bounded from below, becausecq(r ) is bounded. The functionsf(r ), v̂(r ) are kept in the exponent, which isnot expandedin
powers ofq. In the case off this is necessary, because that function is unbounded. We shall see below thatf̂ , v̂, ĝ are all
bounded, but we nevertheless keepv̂ in the exponent too, without expanding, for reasons of convenience.

Substituting these expansions in Eqs.~1.3!, ~1.4!, and satisfying those equations order by order inq, we get the following
equations that must be satisfied inVp or on ]Vp , respectively:

q0:D0¹
2c01l0c050, D0

]c0

]n
1rc050, ~A15!

q1:“•@c0
2¹~q•f!#50,

]f

]n
50, ~A16!

q2:“•@c0
2
“~q• f̂ •q!#5c0

2$@“~q•f!#22q•D̂e•q%,
] f̂

]n
50, ~A17!

q3:“•@c0
2
“~qaqbqgvabg!#12c0

2
“~q•f!•“~q• f̂ •q!5 il3c0

2 ,
]v̂

]n
50, ~A18!

q4:“•@c0
2
“~qaqbqgqvgabgv!#5c0

2$~@“~q•f!#22q•D̂e•q!~q• f̂ •q!12“~q•f!•“~qaqbqgvabg!2l4%,
]ĝ

]n
50.

~A19!
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The first pair of equations~A15! identifies c0, l0 as the
ground-state quantities, while Eqs.~A16!, ~A17! are essen-
tially the same as Eqs.~1.18!–~1.21!. These equations mus
be supplemented by boundary conditions at the external
face ]Vex for the various functions. In a large system, t
boundary condition forcq or c0 can be any macroscopicall
uniform boundary condition—we usually choose period
boundary conditions. A boundary condition forf that is
consistent with this, as well as with Eq.~1.23!, is

f~r !2r5~periodic forrP]Vex!. ~A20!

This determinesf(r ) as a real vector function up to an un
important additive constant.

In order to ensure thatf̂ (r ) is bounded, we must requir
that the rhs of the first equation of~A17! vanish when aver-
aged over the pore space—this leads to the result~1.26! for
D̂e . It is also convenient and consistent to impose perio
boundary conditions onf̂ (r ):

f̂ ~r !5~periodic for rP]Vex!. ~A21!

These conditions determinef̂ (r ) as a real tensor function u
to an arbitrary additive constant tensor. They also lead to
result that the second term on the left-hand side of the
equation of~A18! vanishes when averaged: using Gree
theorem we get

E
Vp

dVc0
2
“~q•f!•“~q• f̂ •q!

52E
Vp

dV~q• f̂ •q!“•@c0
2
“~q•f!#

1F R
]Vp

1 R
]Vex

GdSc0
2 ]~q•f!

]n
~q• f̂ •q!. ~A22!

Here the integrands of the first and second integrals on
rhs vanish according to Eq.~A16!, while the integrand of the
third integral vanishes due to Eqs.~A20! and~A21!. In order
that Imv̂ be bounded from below, we must havel350. If
we also impose uponv̂ the periodic boundary condition

v̂~r !5~periodic forrP]Vex!, ~A23!

thenv̂ will be a bounded real function, determined up to
unimportant additive constant. As another consequenc
this boundary condition, the second term in the curly bra
ets on the rhs of the first equation of~A19! can be shown to
vanish when averaged, in the same way that we obtained
~A22!:

E
Vp

dVc0
2
“f•“v̂52E

Vp

dVv̂“•~c0
2
“f!

1F R
]Vp

1 R
]Vex

GdSc0
2 ]f

]n
v̂50.

~A24!
r-

ic

e
st
s

e

of
-

q.

Using Eq.~A17!, the first term in those same curly bracke
can be rewritten as (q• f̂ •q)“•@c0

2
“(q• f̂ •q)#. This means

that if we added some constantf 0 to q• f̂ •q, then that
would lead to the replacement ofqaqbqgqvgabgv by
qaqbqgqvgabgv1 f 0(q• f̂ •q). Thus, we can determinef 0 by
demanding that

E
Vp

dVc0
2ĝ50. ~A25!

If we use this option, then the normalization ofc̃q will sat-
isfy Eq. ~A6!.

Turning again to~A19!, we can ensure thatĝ is bounded
by choosingl4 so as to make the rhs of the first equati
vanish when averaged. Using the last result together w
~A17!, we get

l45
1

Vp
E
Vp

dV~q• f̂ •q!“•@c0
2
“~q• f̂ •q!#

52
1

Vp
E
Vp

dVc0
2@“~q• f̂ •q!#2

52Eabgv
~e! qaqbqgqv . ~A26!

From the above results, it is clear that the errors in E
~1.16! and~1.17! are in factO(q3), O(q4), respectively, and
that in ~1.36! the error iso(q4), as stated there.

It is curious thatlq is an even function ofq, at least up to
O(q4). This symmetry is also reflected in the eigenfuncti
~A13!, where Recq is even and Imcq is odd in q up to
O(q4). The reason for this behavior is unclear. In particul
inversion symmetry was not assumed to hold and there
cq(r ) does not, in general, exhibit any symmetry und
space inversionr→2r .

In order to prove the inequality~1.27!, we note that
f(r ) can also be found by minimizing the functional

Gq@f8#[
1

Vp
E
Vp

dVc0
2@“~q•f8!#2 ~A27!

over all vector functionsf8(r ) that have square integrabl
first derivatives and satisfy either Eq.~A20! or Eq. ~1.22! as
a boundary condition. The minimum value ofGq@f8# is then
given byGq@f#5q•D̂e•q. Usingf8(r )[r as trial function,
we get

q•D̂e•q<D0Gq@r #5
D0q

2

Vp
E
Vp

dVc0
25D0q

2. ~A28!

In order to estimate the terms that were discarded on
rhs of Eq.~2.17!, we reconsider the sum in that inequalit
using ~1.36! and ~1.37!:
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(
uqu!1/a

e2lqt>e2l0tVE d3q

~2p!3
e2~q•D̂e•q!t~11Eabgv

~e! qaqbqgqvt !

5
Ve2l0t

~4pt !3/2AdetD̂e

H 11
1

t
Eabgv

~e! @~D̂e
21!ab~D̂e

21!gv1~D̂e
21!ag~D̂e

21!bv1~D̂e
21!av~D̂e

21!bg#J
5

Ve2l0t

~4pt !3/2AdetD̂e

H 11OS a2

D0t
D J . ~A29!
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